
A Constraint Programming Approach for Mining
Sequential Patterns in a Sequence Database

Jean-Philippe Métivier1, Samir Loudni1, and Thierry Charnois2

1 GREYC (CNRS UMR 6072) – University of Caen
Campus II Côte de Nacre, 14000 Caen - France

2 LIPN CNRS (UMR 7030) – University PARIS 13
99, avenue Jean-Baptiste Clment 93430 Villetaneuse - France

Abstract. Constraint-based pattern discovery is at the core of numer-
ous data mining tasks. Patterns are extracted with respect to a given
set of constraints (frequency, closedness, size, etc). In the context of se-
quential pattern mining, a large number of devoted techniques have been
developed for solving particular classes of constraints. The aim of this
paper is to investigate the use of Constraint Programming (CP) to model
and mine sequential patterns in a sequence database. Our CP approach
offers a natural way to simultaneously combine in a same framework a
large set of constraints coming from various origins. Experiments show
the feasibility and the interest of our approach.

1 Introduction

Sequential pattern mining is a well-known data mining technique introduced
in [1] to find regularities in a database of sequences. This problem is central in
many application domains, such as web usage mining [7], bioinformatics and text
mining [3]. For effectiveness and efficiency considerations, many authors [10, 24]
have promoted the use of constraint to focus on the most promising knowledge
by reducing the number of extracted patterns to those of a potential interest
given by the final user. The most popular example is the minimal frequency
constraint: it addresses all sequences having a number of occurrences in the
database exceeding a given minimal threshold.

There are already in the literature many algorithms to extract sequential
patterns (e.g. GSP [19], SPADE [25], PrefixSpan [15]), closed sequential patterns
(e.g. CloSpan [23], BIDE [22]) or sequential patterns satisfying regular expres-
sion (e.g. SPIRIT [11]). All the above methods, though efficient, suffer from two
major problems. First, they tackle particular classes of constraints (i.e. mono-
tonic and anti-monotonic ones) by using devoted techniques. However, several
practical constraints required in data mining tasks, such as regular expression,
aggregates, do not fit into these classes. Second, they lack of generic methods
to push various constraints into the sequential pattern mining process. Indeed,
adding and handling simultaneously several types of constraints in a nice and
elegant way beyond the few classes of constraints studied is not still trivial.
The lack of generic approaches restrains the discovery of useful patterns because

the user has to develop a new method each time he wants to extract patterns
satisfying a new type of constraints. In this paper, we address this open issue
by proposing a generic approach for modelling and mining sequential patterns
under various constraints using Constraint Programming (CP).

Our proposition benefits from the recent progress on cross-fertilization be-
tween data mining and CP for itemset mining [12, 14, 17]. The common point of
all these methods is to model in a declarative way pattern mining as Constraint
Satisfaction Problems (CSP), whose resolution provides the complete set of so-
lutions satisfying all the constraints. The great advantage of this modelling is
its flexibility, it enables to define and to push new constraints without having to
develop new algorithms from scratch.

The key contribution of this paper is to propose a CP modelling for the
problem of mining sequential patterns in a sequence database [1]. Our approach
addresses in a unified framework a large set of constraints. This includes con-
straints such as frequency, closedness and size, and other constraints such as
regular expressions, gap and constraints on items. Moreover, our approach en-
ables to combine simultaneously different types of constraints. This leads to the
first CP-based model for discovering sequential patterns in a sequence database
under various constraints. Experiments on a case study on biomedical literature
for discovering gene-RD relations from PubMed articles show the feasibility and
the interest of our approach.

This paper is organized as follows. Section 2 gives the necessary definitions
and presents the problem formulation. Section 3 introduces the main principles of
constraint programming. Section 4 describes our CP model for mining sequential
patterns in a sequence database. We review some related work in Section 5 and
Section 6 reports in depth a case study from the biomedical literature domain
for discovering gene-RD relations from PubMed articles. Finally, we conclude
and draw some perspectives.

2 Sequential Pattern Mining

In this section, we introduce sequential patterns defined by Agrawal et al. [1].

2.1 Sequential Patterns

Sequential pattern mining [1] is a data mining technique that aims at discovering
correlations between events through their order of appearance. Sequential pat-
tern mining is an important field of data mining with broad applications (e.g.,
biology, marketing, security) and there are many algorithms to extract frequent
sequences [19, 25, 23].

In the context of sequential patterns extraction, a sequence is an ordered
list of literals called items. A sequence s is denoted by 〈i1, i2 . . . in〉 where ik,
1 ≤ k ≤ n, is an item. Let s1 = 〈i1, i2 . . . in〉 and s2 = 〈i′1, i′2 . . . i′m〉 be two
sequences. s1 is included in s2 if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m
such that i1 = i′j1 , i2 = i′j2 , . . ., in = i′jn . s1 is called a subsequence of s2. s2

Table 1. SDB1: a sequence database

Sequence identifier Sequence

1 〈a b c d a〉
2 〈d a e〉
3 〈a b d c 〉
4 〈c a〉

is called a super-sequence of s1, denoted by s1 � s2. For example the sequence
〈a b d c〉 is a super-sequence of 〈b c〉: 〈b c〉 � 〈a b d c〉. A sequence database SDB
is a set of tuples (sid, s), where sid is a sequence identifier and s a sequence.
For instance, Table 1 represents a sequence database of four sequences. A tuple
(sid, s) contains a sequence s1, if s1 � s. The support of a sequence s1 in a
sequence database SDB, denoted sup(s1), is the number of tuples containing s1
in the database1. For example, in Table 1, sup(〈c a〉) = 2.

A frequent sequential pattern is a sequence such that its support is greater or
equal to a given threshold: minsup. The sequential pattern mining problem is
to find the complete set of frequent sequential patterns with respect to a given
sequence database SDB and a support threshold minsup.

2.2 Sequential Pattern Mining under Constraints

In order to drive the mining process towards the user objectives and to elim-
inate irrelevant patterns, one can define constraints [10]. The most commonly
used constraint is the frequency constraint (that assigns a value to minsup).
We review some of the most important constraints for the sequential mining
problem [10].

Closedness Constraint The closed sequential patterns [23] are a condensed
representation of the whole set of sequential patterns. This condensed represen-
tation eliminates redundancies according to the frequency constraint. A frequent
sequential pattern s is closed if there exists no other frequent sequential pattern
s′ such that s � s′ and sup(s) = sup(s′). For instance, with minsup = 2, the
sequential pattern 〈b c〉 from Table 1 is not closed whereas the pattern 〈a b c〉 is
closed.

Item constraint. An item constraint specifies subset of items that should or
should not be present in the sequential patterns. For instance, if we impose the
constraint Citem ≡ sup(p) ≥ 2 ∧ (a ∈ p) ∧ (b ∈ p), three sequential patterns are
mined from Table 1: p1 = 〈a b〉, p2 = 〈a b c〉 and p3 = 〈a b d〉.

Size constraint. The aim of this constraint is to limit the length of the patterns,
the length being the number of occurrences of items. The length of a pattern

1 The relative support is also used:

supSDB(T) =
|{(sid, s) s.t. (sid, s) ∈ SDB ∧ (T � s)}|

|SDB|

p will be denoted by len(p). For example, if len(p) ≥ 3 ∧ sup(p) ≥ 2, only two
sequential patterns are extracted (p2 and p3).

Gap constraint. Another widespread constraint is the gap constraint. A se-
quential pattern with a gap constraint Cgap ≡ [M,N], denoted by p[M,N], is a
pattern such as at least M items and at most N items are allowed between ev-
ery two neighbor items, in the original sequences. For instance, let p[0,2] = 〈c a〉
and p[1,2] = 〈c a〉 be two patterns with two different gap constraints and let us
consider the sequences of Table 1. Sequences 1 and 4 support pattern p[0,2] (se-
quence 1 contains one item between (c) and (a) whereas sequence 4 contains no
item between (c) and (a)). But only Sequence 1 supports p[1,2] (only sequences
with one or two items between (c) and (a) support this pattern).

Regular expression constraint. A regular expression constraint CRE is a con-
straint specified as a regular expression over the set of items. A sequential pattern
satisfies CRE if and only if the pattern is accepted by its equivalent deterministic
finite automata [11]. For instance, the two sequential patterns 〈a b c〉 and 〈a d c〉
from Table 1 satisfy the regular expression constraint CRE = a ∗ {bb|bc|dc}.

3 Constraint Programming

In this section, we first introduce basic constraint programming concepts and
then present two constraints of interest: Among and Regular.

3.1 Preliminaries

Constraint programming (CP) is a generic framework for solving combinatorial
problems modelled as Constraint Satisfaction Problems (CSP). The key power
of CP lies in its declarative approach towards problem solving: in CP, the user
specifies the set of constraints which has to be satisfied, and the CP solver
generates the correct and complete set of solutions. In this way, the specification
of the problem is separated from the search strategy.

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {X1, . . . , Xn} with finite domains D = {D1, . . . , Dn} such that each Di

is the set of values that can be assigned to Xi, together with a finite set of
constraints C, each on a subset of X . A constraint C ∈ C is a subset of the
cartesian product of the domains of the variables that are in C. The goal is
to find an assignment (Xi = di) with di ∈ Di for i = 1, . . . , n, such that all
constraints are satisfied. This assignment is called a solution to the CSP. For a
given assignment t, t[Xi] denotes the value assigned to Xi in t.

In Constraint Programming (see [2]), the solution process consists of iter-
atively interleaving search phases and propagation phases. The search phase
essentially consists of enumerating all possible variable-value combinations, un-
til we find a solution or prove that none exists. It is generally performed on a
tree-like structure. In order to avoid the systematic generation of all the combi-
nations and reduce the search space, the propagation phase shrinks the search

space: each constraint propagation algorithm removes values that a priori cannot
be part of a solution w.r.t. the partial assignment built so far. The removal of
inconsistent domain values is called filtering.

An important modelling technique from CP are the global constraints that
provide shorthands to often-used combinatorial substructures. Global constraints
embed specialized filtering techniques that exploit the underlying structure of
the constraint to establish stronger levels of consistency much more efficiently.
Nowadays, global constraints are considered to be one of the most important
components of CP solvers in practice.

3.2 The Among and Regular Global Constraints

Among Constraint. This constraint restricts the number of occurrences of
some given values in a sequence of n variables [5]:

Definition 1 (Among constraint, [5]). Let X=X1,. . .,Xn be a sequence of n
variables, S a set of values, DX the cartesian product of the variable domains
in X. Let l and u be two integers s.t. 0 ≤ l ≤ u ≤ n.

Among(X,S, l, u) = {t ∈ DX | l ≤ | {i, t[Xi] ∈ S} |≤ u}

The Among constraint can be encoded by channelling into 0/1 variables using
the sum constraint [6]: ∀i ∈ {1, . . . , n} Bi = 1 ↔ t[Xi] ∈ S ∧ l ≤

∑n
i=1Bi ≤ u.

Regular Constraint. Given a deterministic finite automaton M describing
a regular language, constraint Regular(X,M) ensures that every sequence of
values taken by the variables of X have to be a member of the regular language
recognised by M :

Definition 2 (Regular constraint, [16]). Let M be a Deterministic Finite
Automaton (DFA), L(M) the language defined by M , X a sequence of n vari-
ables. Regular(X,M) has a solution iff ∃ t ∈ DX s.t. t ∈ L(M).

In [16], Regular constraint over a sequence of n variables is modelled by a
layered directed graph G = (V,U), and a solution to Regular(X,M) corresponds
to an s-t path in graph G, where s is the “source” node and t the “sink” node.

4 Modeling Sequential Patterns using CP

This section presents our CP modelling for the sequential pattern mining prob-
lem. Let I = {i1, i2, . . . , in} be a set of n items, EOS a symbol not belonging to
I (EOS /∈ I) denoting the end of a sequence, SDB a set of m sequences and `
the maximal length of the sequence in SDB.

0start 1 2 3 4
a

b

d

c

EOS

b

d

c

EOS

d

c
EOS

c

EOS

EOS

Fig. 1. The automaton modelling all subsequences of the sequence 〈a b d c〉.

4.1 Modelling an Unknown Sequential Pattern

Let p be the unknown sequential pattern we are looking for. First, ` variables
{P1, P2, . . . , P`} having Di = I ∪{EOS} for domain are introduced to represent
p. Second, m boolean variables Ss (having {0, 1} for domain) are used such that
(Ss = 1) iff sequence s contains the unknown sequential pattern p:

(Ss = 1)⇔ (p � s) (1)

In equation (1), (Ss = 1) if pattern p is a subsequence of s; 0 otherwise. So,
sup(p) = Σs∈SDB Ss.

4.2 Modelling Sequential Pattern Mining

Let SDB be a sequence database and let a support threshold minsup. To encode
that “p � s”, we first have to generate an automaton As capturing all subse-
quences that can be found inside a given sequence s. Then, we have to impose a
Regular constraint stating that the unknown pattern p must be recognized by
the automaton As.

To reduce the number of states of the automaton, for each sequence, we
consider only its frequent items in the SDB w.r.t. minsup. Indeed, any super-
pattern of an infrequent item cannot be frequent. Figure 1 shows an example of
automaton generated for the third sequence of Table 1. Algorithm 1 depicts the
pseudo-code for generating the automaton As.

To enumerate the complete set of frequent sequential patterns with respect
to a given sequence database SDB and a support threshold minsup, we need
to express that the unknown sequential pattern p occurs at least minsup times.
This problem is modelled by the following constraints:

Algorithm 1: Pseudo-code for generating As.

function generateAutomaton(Sequence s)
Automaton As;
As.nbState ← length(s) + 1;
As.addInitialState(0);
As.addAcceptingState(length(s));
foreach (state ∈ [0,length(s)]) do

foreach (position ∈ [state+1,length(s)]) do
item ← getItem(s,position);
As.addTransition(state,item,position);

As.addTransition(state,EOS,length(s));

return As;

Theorem 1 (Frequent Sequential Pattern Mining). Sequential pattern
mining is expressed by the following constraints:

∀s ∈ SDB : Ss = 1↔ Regular(p,As) (2)

sup(p) =
∑

s∈SDB

Ss ≥ minsup (3)

Proof. The reified constraint (2) models the support constraint. By construction,
the automaton As encodes all sequential patterns that are subsequences of the
sequence s. If the Regular constraint is satisfied (resp. not satisfied), then Ss

must be equal to 1 (resp. must be equal to 0). The propagation is also performed,
in a same way, from the equality constraint toward the Regular constraint.

The frequency constraint (3) enforces that at least minsup variables from S
must take value 1. Together with constraint (2), it enforces that at least minsup
sequences must support the sequential pattern described by p. �

4.3 Modelling other Constraints

This section shows how our CP approach enables us to express in a straightfor-
ward way constraints presented in Section 2.2.

Closedness Constraint. By definition a closed sequential pattern is the largest
pattern that is contained in all selected sequences. Intuitively, in our encoding
this corresponds to the sequential pattern having the less number of variables Pi

instantiated to EOS. Thus, the satisfaction problem is turned into an optimiza-
tion one: minimize the numbers of variables Pi instantiated to EOS. To express
this minimization problem, we first have to add for each variable Pi an unary
constraint ci stating that if (Pi = EOS) we have to pay a cost 1; 0 otherwise.

Then, we have to minimize the cost function c(p) =
∑

Pi∈p ci to obtain a closed
sequential pattern:

minimizep c(p)
sup(p) ≥ minsup (4)

To enumerate the complete set of closed sequential patterns with respect to
a given sequence database SDB and a support threshold minsup, we need to
avoid future patterns to be equal to the previously found closed patterns. So,
each time a frequent sequential pattern p is proven closed, we dynamically add
a new constraint to forbid it.

Item Constraint. In order to specify that a subset of items should or should
not be present in the sequential patterns, we have to add the following constraint:

Among(p, V, [l, u]) (5)

where V is a subset of items, l and u are two integers s.t. 0 ≤ l ≤ u ≤ `. The
Among constraint enforces that the number of variables of p that take a value
from V is at least l and at most u. Since p represents the sequential patterns
we are looking for, the previous constraint ensures that items of V should be
present at least l times in the mined patterns.

To express the fact that the sequential patterns should not contain any item
of V , we just have to set l and u to 0.

Size Constraint. In order to consider the frequent sequential patterns of size
k, we just have to add the following constraints:

∀i ∈ [1 . . . k] : Pi 6= EOS (6)

∀i ∈ [k + 1 . . . `] : Pi = EOS (7)

The previous constraints enforce that the k first variables of p must be dif-
ferent from EOS, while the (` − k) remaining variables of p must be equal to
EOS.

The minimum size constraint (i.e. len(p) ≥ k) can be formulated by the
following constraint:

∀i ∈ [1 . . . k] : Pi 6= EOS (8)

For the maximum size constraint (i.e. len(p) ≤ k), this can be modelled as
follows:

∀i ∈ [k + 1 . . . `] : Pi = EOS (9)

0start 1 2 3 4
a

b

d

c

EOS

d

EOS

c
EOS

EOS

EOS

Fig. 2. The new automaton modelling all subsequences of the sequence 〈a b d c〉 sat-
isfying the gap constraint [1,1].

Gap Constraint. Let p[M,N] be the sequential pattern satisfying the gap con-
straint [M,N]. To encode this constraint we have to modify the construction of
the automaton As (cf. Theorem 1) in a such way that only transitions respect-

ing the gap constraint will be kept. Let A
[M,N]
s be the new resulting automaton

representing all sequential patterns that are subsequence of the sequence s and
satisfying the gap constraint. Finally, the reified constraint (2) is rewrited as
follows:

∀s ∈ SDB : Ss = 1↔ Regular(p,A[M,N]
s) (10)

Theorem 2 (Frequent Sequential Pattern Mining with Gap). Sequential
pattern mining with a gap constraint is expressed by constraints (3) and (10).

Figure 2 gives the new automaton obtained from the automaton of Figure 1
with the gap constraint [1, 1]. For instance, the sequential pattern 〈a b〉 does not
satisfy the gap constraint; it is not recognized by the new automaton.

To generate the automaton A
[M,N]
s for a sequence s, we need to modify

Algorithm 1 in a such way that only valid transitions satisfying the gap constraint
[M,N] are considered . This is done by adding the following condition inside the
second loop foreach: (state == 0 ||M ≤ position−state ≤ N) (see Algorithm 1).

Regular Expression Constraint. Let Are be an automaton encoding a regu-
lar expression over the set of items. Then, the regular expression constraint can
be formulated as follows:

Regular(p,Are) (11)

As presented in [8], a regular expression can be translated into a determin-
istic finite automaton. Thus, the Regular constraint over p ensures that every

sequence of values taken by the variables of p have to be a member of the reg-
ular language recognised by Are, therefore recognized by the regular expression
associated to Are.

5 Related Work

Computing Sequential Patterns. In the context of constraint-based sequen-
tial pattern mining, several algorithms have been proposed [19, 25, 15, 23, 22,
11]. All these algorithms exploit properties of the constraints (i.e., monotonic-
ity, anti-monotonicity or succinctness) to perform effective pruning. For con-
straints that do not fit in these categories, they are handled by relaxing them
to achieve some nice property (like anti-monotonicity) facilitating the pruning.
For instance, Garofalakis et al. [11] proposed regular expressions as constraints
and developed a family of SPIRIT algorithms each achieving a different kind of
relaxation of the regular expression constraint. Such a method, though inter-
esting, makes tricky the integration of such constraints in a nice and elegant
way. So, unlike these algorithms, our approach enables to address in a unified
framework a broader set of constraints, and more importantly, to combine them
simultaneously.

CP for Pattern Mining. In the context of local patterns, an approach using
CP for itemset mining has been proposed in [17]. This approach addresses in a
unified framework a large set of local patterns and constraints such as frequency,
closedness, maximality, constraints that are monotonic or anti-monotonic. To
deal with richer patterns satisfying properties involving several local patterns,
different extensions have been proposed, such as pattern sets [13], n-ary pat-
terns [14], top-k patterns [20] or skypatterns [21]. Our approach also benefits
from the recent progress on cross-fertilization between data mining and CP for
itemset mining, but it addresses a different problem with a different modelling.

CP for Sequence Mining. More recently, Coquery et al. [9] have proposed
a SAT-Based approach for Discovering frequent, closed and maximal sequential
patterns with wildcards in only a single sequence of items. However, unlike [9],
our approach considers a database of sequences of items. Moreover, in [9], the
sequential patterns with non-contiguous items are modelled using empty items
as wildcards. But the gap between the items have to be fixed. Then, for instance
the two sequential patterns 〈a o b〉 and 〈a o o b〉 are considered different. On the
contrary, our modelling enables us to define any (minimal or maximal) value for
the gap.

6 Experimentations

Experiments are conducted on texts from biological and medical texts. The goal
is to discover relations between genes and rare diseases. The details of this ap-
plication is given in [4]. In this section, we focus on the extraction of sequential
patterns using our CP approach, and we give quantitative results showing the
relevant of the approach.

6.1 Case Study

Settings. We created a corpus from the PubMed database using HUGO2 dic-
tionary and Orphanet dictionary to query the database to get sentences having
at least one rare disease and one gene. 17, 527 sentences have been extracted
in this way and we labelled the gene and rare disease (RD) names thanks
to the two dictionaries. For instance, the sentence “<disease>Muir-Torre
syndrome<\disease> is usually inherited in an autosomal dominant fashion
and associated with mutations in the mismatch repair genes, predominantly in
<gene>MLH1<\gene> and <gene>MSH2<\gene> genes.” contains one
recognized RD, and two recognized genes. These 17, 527 sentences are the train-
ing corpus from which we experiment the sequential pattern extraction.

Sequential Pattern Extraction. Sequences of the SDB are the sentences of
the training corpus: an item corresponds to a word of the sentence. We carry out
a POS tagging of the sentences thanks to the TreeTagger tool [18]. In the sen-
tences, each word is replaced by its lemma, except for gene names (respectively
disease names) which are replaced by the generic item GENE (respectively
DISEASE). Note that unlike machine learning based methods, our approch
does not require to annotate the relations: they are discovered.

In order to discover sequential patterns, we use usual constraints such as
the minimal frequency and the minimal length constraints and other useful con-
straints expressing some linguistic knowledge (e.g. membership and association
constraints). The goal is to retain sequential patterns which convey linguistic
regularities (e.g., gene-rare disease relationships). Our method offers a natural
way to simultaneously combine in a same framework these constraints coming
from various origins. We briefly sketch these constraints.
• The minimal frequency constraint. Three values of minimal frequency have
been experimented: 2%, 5%, and 10%.
• The minimal length constraint. The aim of this constraint is to remove sequen-
tial patterns that are too small w.r.t. the number of items (number of words) to
be relevant linguistic patterns. We tested this constraint with a value set to 3.
• The membership constraint. This constraint enables to filter out sequential pat-
terns that do not contain some selected items. For example, we express that the
extracted patterns must contain at least three items (expressing the linguistic
relation): GENE, DISEASE and noun or verb3. We used the item constraint
to enforce this constraint.
• The association constraint. This constraint expresses that all sequential pat-
terns that contain the verb item must contain its lemma and its grammatical
category. We used the item constraint to enforce this constraint.
• The closedness constraint. In order to exclude redundancy between patterns,
we used closed sequential patterns.

2 www.genenames.org
3 For each word (i.e. item), its grammatical category is stored in a base.

#sentences 50 100 150 200 250
#sol. time #sol. time #sol. time #sol. time #sol. time

freq > 2% 129 1,105 329 12,761 441 35,164 (89) – (34) –

freq > 5% 47 285 67 1,571 81 2,091 94 4,119 119 8,516

freq > 10% 4 53 21 251 26 577 29 1,423 28 2,764

#sentences 300 350 400 450 500
#sol. time #sol. time #sol. time #sol. time #sol. time

freq > 2% (129) – (45) – (10) – (1) – (0) –

freq > 5% 101 9,620 93 16057 83 21,764 84 35,962 (26) –

freq > 10% 30 5147 24 4,493 23 7,026 20 13,744 21 17,708
Table 2. Results obtained on different subsets of the PubMed dataset.

Experimental Protocol. We carried out experiments on several subsets of
the PubMed dataset with different sizes ranging from 50 to 500 sentences. A
timeout of 10 hours has been used. For each subset, we report the number of
extracted closed sequential patterns and the CPU-times to extract them (in
seconds). When the timeout is reached, the number of extracted patterns (until
the timeout) is given in parenthesis.

All experiments were conducted on AMD Opteron 2.1 GHz and a RAM of
256 GB. We implemented our proposal in C++ using the library toulbar24 for
solving constrained optimization problems modelled as Cost Function Network
(CFN).

6.2 Results

Table 2 reports the results we obtained on different subsets of the PubMed
dataset with values of minsup ranging from 2% to 10%. From these results, we
can draw the following remarks.

i) Soundness and Flexibility. As the resolution performed by the CP solver
is sound and complete, our approach is able to mine the correct and complete
set of sequential patterns satisfying the different constraints. We compared the
sequential patterns extracted by our approach with those found by [4], and the
two approaches return the same set of patterns. Table 2 depicts the number of
closed sequential patterns according to minsup. As expected, the lower minsup
is, the larger the number of extracted sequential patterns.

ii) Highlighting useful sequential patterns. Our approach allowed to ex-
tract several relevant linguistic patterns. Such patterns can be used to explain
RD-gene relationships from PubMed articles. For instance, three sequential pat-
terns of great interest were highlighted by the expert:

1. 〈(DISEASE) (be) (cause) (by) (mutation) (in) (the) (GENE)〉
2. 〈(GENE) (occur) (in) (DISEASE)〉
4 https://mulcyber.toulouse.inra.fr/projects/toulbar2.

3. 〈(DISEASE) (be) (an) (mutation) (in) (GENE)〉
From a biomedical point of vue, these sequential patterns are interesting since

they convey a notion of causality (i.e. gene cause rare disease).

iii) Computational Efficiency. This experiment quantify runtimes and the
scalability of our approach. In practice, runtimes vary according to the size of the
datasets. For datasets with size up to 200, the set of all solutions is computed.
We observe that runtimes vary from few seconds for high frequency thresholds
to about few hours for low frequency thresholds. However, for large size datasets
(≥ 200) and low frequency thresholds (i.e. minsup = 2%), the CP approach does
not succeed to complete the extraction of all closed sequential patterns within
a timeout of 10 hours. Indeed, with the increase of the size of the dataset, the
search space and the runtime increase drastically, and the solver spends much
more time to find the first solution.

Finally, note that comparing runtimes with those obtained by ad hoc ap-
proaches would be rather difficult. In fact, these approaches use devoted tech-
niques and do not offer the same level of genericity and expressivity as in our CP
approach. Moreover, they cannot push in depth simultaneously different cate-
gories of constraints. Above all, there does not exist any algorithm, neither tool,
for extracting sequential patterns under all the contraints proposed in our work.

7 Conclusion

We have proposed a flexible approach to mine sequential patterns of items in
a sequence database. The declarative side of the CP framework easily enables
us to address a large set of constraints and leads to a unified framework for
extracting sequential patterns under constraints. Finally, the feasibility and the
interest of our approach has been highlighted through experiments on a case
study in biomedical literature for discovering gene-RD relations from PubMed
articles.

We are currently investigating a new direction to enhance the efficiency of
our approach: instead of constructing an automaton for every sequence, it would
be more efficient to build some variant of a Prefix Tree Automata on the origi-
nal dataset to avoid some redundancies. Furthermore, we intend to extend our
approach to discover sequential patterns of itemsets in a sequence database. Dis-
covering pattern sets is an attractive road to propose actionable patterns and
the CP modelling is a proper paradigm to tackle this challenge [13, 14]. Further
work is to address this issue.

Acknowledgements. This work is partly supported by the ANR (French Research
National Agency) funded project FiCOLOFO ANR-10-BLA-0214. We would like
to thank Bruno Crémilleux for his valuable comments.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu and Arbee
L. P. Chen, editors, ICDE, pages 3–14. IEEE Computer Society, 1995.

2. K. R. Apt. Principles of constraint programming. Cambridge University Press,
2003.

3. N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux. Discovering linguistic pat-
terns using sequence mining. In CICLing (1), pages 154–165, 2012.

4. N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux. Sequential pattern mining
to discover relations between genes and rare diseases. In IEEE Int. Symp. on
Computer-Based Medical Systems (CBMS), pages 1–6, 2012.

5. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal
of Mathematical and Computer Modelling, 20(12):97–123, 1994.

6. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Among, common
and disjoint constraints. In CSCLP, pages 29–43, 2005.

7. I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization of
navigation patterns on a web site using model-based clustering. In Raghu Ramakr-
ishnan, Salvatore J. Stolfo, Roberto J. Bayardo, and Ismail Parsa, editors, KDD,
pages 280–284. ACM, 2000.

8. Chia-Hsiang Chang and Robert Paige. From regular expressions to dfa’s using
compressed nfa’s. Theor. Comput. Sci., 178(1-2):1–36, 1997.

9. E. Coquery, S. Jabbour, L. Säıs, and Yakoub Salhi. A sat-based approach for dis-
covering frequent, closed and maximal patterns in a sequence. In Luc De Raedt,
Christian Bessière, Didier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz,
and Peter J. F. Lucas, editors, ECAI, volume 242 of Frontiers in Artificial Intelli-
gence and Applications, pages 258–263. IOS Press, 2012.

10. G. Dong and J. Pei. Sequence Data Mining, volume 33 of Advances in Database
Systems. Kluwer, 2007.

11. Minos N. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with
regular expression constraints. IEEE Trans. Knowl. Data Eng., 14(3):530–552,
2002.

12. T. Guns, S. Nijssen, and L. De Raedt. Itemset mining: A constraint programming
perspective. Artif. Intell., 175(12-13):1951–1983, 2011.

13. T. Guns, S. Nijssen, and L. De Raedt. k-pattern set mining under constraints.
IEEE Trans. Knowl. Data Eng., 25(2):402–418, 2013.

14. M. Khiari, P. Boizumault, and B. Crémilleux. Constraint programming for mining
n-ary patterns. In David Cohen, editor, CP, volume 6308 of Lecture Notes in
Computer Science, pages 552–567. Springer, 2010.

15. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixs-
pan: Mining sequential patterns by prefix-projected growth. In D. Georgakopoulos
and A. Buchmann, editors, ICDE, pages 215–224. IEEE Computer Society, 2001.

16. G. Pesant. A regular language membership constraint for finite sequences of vari-
ables. In Mark Wallace, editor, CP’04, volume 2239 of LNCS, pages 482–495.
Springer, 2004.

17. L. De Raedt, T. Guns, and S. Nijssen. Constraint programming for itemset mining.
In Ying Li, Bing Liu, and Sunita Sarawagi, editors, KDD’08, pages 204–212. ACM,
2008.

18. H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings
of International Conference on New Methods in Language Processing, September
1994.

19. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In Peter M. G. Apers, Mokrane Bouzeghoub, and Georges
Gardarin, editors, EDBT, volume 1057 of Lecture Notes in Computer Science,
pages 3–17. Springer, 1996.

20. W. Ugarte, P. Boizumault, S. Loudni, and B. Crémilleux. Soft threshold constraints
for pattern mining. In Jean-Gabriel Ganascia, Philippe Lenca, and Jean-Marc Pe-
tit, editors, Discovery Science, volume 7569 of Lecture Notes in Computer Science,
pages 313–327. Springer, 2012.

21. W. Ugarte, P. Boizumault, S. Loudni, B. Crémilleux, and A. Lepailleur. Découverte
des soft-skypatterns avec une approche PPC. In Christel Vrain, André Péninou,
and Florence Sèdes, editors, EGC, volume RNTI-E-24 of Revue des Nouvelles Tech-
nologies de l’Information, pages 217–228. Hermann-Éditions, 2013.

22. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Z. Meral
Özsoyoglu and Stanley B. Zdonik, editors, ICDE, pages 79–90. IEEE Computer
Society, 2004.

23. X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large
databases. In Daniel Barbará and Chandrika Kamath, editors, SDM. SIAM, 2003.

24. M. J. Zaki. Sequence mining in categorical domains: Incorporating constraints. In
CIKM, pages 422–429. ACM, 2000.

25. M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1/2):31–60, 2001.

