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Abstract. Semantic similarity measures (SSMs) refer to a set of algo-
rithms used to quantify the similarity of two or more terms belonging
to the same ontology. Ontology terms may be associated to concepts,
for instance in computational biology gene and proteins are associated
with terms of biological ontologies. Thus, SSMs may be used to quan-
tify the similarity of genes and proteins starting from the comparison
of the associated annotations. SSMs have been recently used to com-
pare genes and proteins even on a system level scale. More recently some
works have focused on the building and analysis of Semantic Similar-
ity Networks (SSNs) i.e. weighted networks in which nodes represents
genes or proteins while weighted edges represent the semantic similarity
score among them. SSNs are quasi-complete networks, thus their analy-
sis presents different challenges that should be addressed. For instance,
the need for the introduction of reliable thresholds for the elimination
of meaningless edges arises. Nevertheless, the use of global thresholding
methods may produce the elimination of meaningful nodes, while the use
of local thresholds may introduce biases. For these aims, we introduce a
novel technique, based on spectral graph considerations and on a mixed
global-local focus. The effectiveness of our technique is demonstrated
by using markov clustering for the extraction of biological modules. We
applied clustering to simplified networks demonstrating a considerable
improvements with respect to the original ones.
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1 Introduction

The accumulation of raw experimental data about genes and proteins has been
accompanied by the accumulation of functional information, i.e. knowledge about
function. The assembly, organization and analysis of this data has given a consid-
erable impulse to research [1]. Usually biological knowledge is encoded by using
annotation terms, i.e. terms describing for instance function or localization of
genes and proteins. Such annotations are often organized into ontologies, that
offer a formal framework to organize in a formal way biological knowledge [2]. For
instance, Gene Ontology (GO) provides a set of annotations (namely GO Terms)
of biological aspects, structured into three main taxonomies: Molecular function



(MF), Biological Process (BP), and Cellular Component (CC). Annotations are
often stored in publicly available databases, for instance a main resource for GO
annotations is the Gene Ontology Annotation (GOA) database [3].

A set of algorithms, referred to as Semantic Similarity measures (SSMs),
enabled the comparison of set of terms belonging to the same ontology. SSMs take
in input two or more ontology terms and produce as output a value representing
their similarity. This enabled the possibility to use such formal instruments for
the comparison and analysis of proteins and genes [2].

Consequently, many works have focused on: (i) the definition of ad-hoc se-
mantic measures tailored to the characteristics of Gene Ontology ; (ii) the defini-
tion of measures of comparison among genes and proteins; (iii) the introduction
of methodologies for the systematic analysis of metabolic networks; (iv) building
of semantic similarity networks, i.e. edge-weighted graph whose nodes are genes
or proteins, and edges represent semantic similarities among them [4].

A semantic similarity network of proteins (SSN) is an edge-weighted graph
Gssu=(V,E), where V is the set of proteins, and F is the set of edges, each edge
has an associated weight that represent the semantic similarity among related
pairs of nodes.

These networks are constructed by computing some similarity value between
genes or proteins. Nevertheless, such networks are usually quasi complete net-
works, so the use of them as framework of analysis has many problems.

Thus the definition of a threshold on the edge weight to retain only the
meaningful relationships is a crucial step. An high threshold may result on the
loss of many significant relationship while a low threshold may introduce a lot
of noise-

In other kind of networks many methods have been defined: for instance
the use of an arbitrary global threshold [5], or the use only of a fraction of
highest relationship [6], or statistical based methods [7]. Nevertheless, internal
characteristics of SSMs (as investigated in [8]) do not suggest the use of global
thresholds. In fact small regions of relatively low similarities may be due to the
characteristics of measures while proteins or genes have high similarity. Thus
the use of local threshold may constitute an efficient way, i.e retaining only
top k-edges for each node [9]. Although this consideration, this choice may be
influenced by the presence of local noise and in general may cause the presence
of biases in different regions.

Starting from these considerations, we developed a novel hybrid method that
merges together both local and global considerations. This method is based on
spectral graph theory and it is based on two main considerations.

We apply a local threshold for each node, i.e we retain only edges whose
weight is higher than the average of all its adjacent. The choice of the thresh-
old is made by considering a global consideration: the emergence of nearly-
disconnected components by looking at the laplacian of the graph and its eigen-
values [10, 11]. In particular we build a novel graph in which edge weights are 0,5
and 1. The weight 0,5 is associated to edges that are retained considering only
one adjacent node, while the weight 1 is associated to edges that are retained.



The choice of this simplification has a biological counterpart on the structure
of biological networks. It has been proved in many works that these biological
networks tend to have a modular structure in which hubs proteins (i.e. rele-
vant proteins) have many connections [12-14]. Moreover, many works proved
the existence of community structures, i.e. small dense regions with few link to
other regions [15]. These considerations have usually inspired many algorithms
for extracting biological relevant modules by analyzing biological networks [16].

From these consideration arises the main hypothesis of this paper: the sim-
plification of quasi complete SSN by removing non relevant edges to evidence
the formation of a structure of networks characterized by relatively-small dense
networks loosely coupled with other ones.

After the application of the proposed simplification, we analyze resulting
networks by applying a common algorithms used to mine graphs. We show that
thresholded networks have in general more performances and that the best ones
are reached with nearly-disconnected ones.

2 Problem Statement

We here introduce main concepts used for the formulation of the main problem
of this article.

2.1 Spectral Graph Analysis

Spectral graph theory [17] refers to the study of the properties of a graph by
looking at the properties of the eigenvalues and eigenvectors of matrices asso-
ciated to the graph. In particular we here focus on the Laplacian matrix of a
graph that is defined as follows [18,19].

Given an edge-weighted graph G with n nodes, we may define the weighted
adjacency matrix A as the nxn matrix in which the element a; ; is defined as
follows.

w; ; if 1,j are connected;
a; i = g (1)
7 0, if1i,j are not connected

For these graphs the notion of degree may be easily extended in this way. For
each vertex v; the degree is defined as the sum of the weights of all the adjacent
edges vol,, = Yjw; ;. Then we may define the Degree Matrix D as follows:

voly,, if i=j;

dij = {0, elsewhere (2)

Finally, the Laplacian Matrix L is defined as L = D — A. Similarly in litera-

ture other slightly definitions of Laplacian (e.g. Signless Laplacian, Normalized
Laplacian [20]) have been proposed.

Beside the other properties that are related to the characteristic polynomial

of laplacian, we here focus on the smallest nonzero eigenvalue, often referred to as

Fiedler vector [21]. It has been shown that the number of connected components



is related to the algebraic multiplicity of the smallest eigenvalues in case of both
un-weighted and weighted graphs. Starting from this consideration, Ding et al.
[10] observed that also nearly-disconnected components may also identified by
analyzing the eigenvector associated to the Fiedler vector.

For this study we analysed the spectrum of the graph obtained after the
simplification under the hypothesis that a graph with nearly disconnected com-
ponent may represent a suitable choice. If the graph is connected we will build a
novel graph. If the graph has-nearly disconnected component we end the process
and we mine the resulting subgraph for the identification of biological relevant
modules.

2.2 Semantic Similarity Measures

A semantic similarity measure (SSMs) is a formal instrument to quantify the
similarity of two or more terms of the same ontology. Measures comparing only
two terms are often referred to as pairwise semantic measures, while measures
that compare two sets of term yielding a global similarity among sets are referred
to as groupwise measures.

Since proteins and genes are associated to a set of terms coming from Gene
Ontology, SSM s are often extended to proteins and genes. Similarity of proteins
is then translated in the determination of similarity of set of associated terms
[22,23]. Many similarity measures have been proposed (see for instance [2] for a
complete review) that may be categorized according to different strategies used
for evaluating similarity. We here do not discuss deeply SSMs for lack of space.

3 The Proposed Approach

We here introduce a method for threshold selection on weighted graph based on
the spectrum of the associated laplacian matrix. The process is straightforward.
The pruning algorithm examines each node in the input graph. For each node it
stores all the weights of the adjacent edges. Then it determines a local threshold
k = u+ «a * sd, where p is the average of weights, sd is the standard deviation
and « is a variable threshold that is fixed globally. In this way we realize an
hybrid approach since the threshold k has a global component « and a local one
given by the average and standard deviation of the weights of the adjacent.

If the weight of an edge is greater than k considering the adjacent of both
its nodes, then it will be inserted into the novel graph with unitary weight.
Otherwise, hen if the weight of an edge is greater than k considering only one
of its adjacent nodes, then it will be inserted into the novel graph with weight
0,5. At the end of this process, the Laplacian of the spectrum of the graph is
analyzed as described in Ding et al [10]. If the graph presents nearly disconnected
components, then the process stops, alternatively a novel graph with a more
stringent threshold k is generated.



3.1 Building Semantic Similarity Networks

Following algorithm explains the building of the semantic similarity network
Gssy by iteratively calculating semantic similarity among each pair of proteins.
For each step two proteins are chosen and the semantic similarity among them
is calculated. Then nodes are added to the graph and an edge is inserted when
the semantic similarity is greater than 0.

Algorithm 1: Building Semantic Similarity Networks

Building Semantic Similarity Networks Data: Protein Dataset P,
Semantic Similairity Measure SS
Result: Semantic Similarity Network Gss,=Vssu, Fssu
initialization;
forall the p; in P do
read p;;
add p; in Vigy ;
forall the p; in P, j #1i do
Let 0=SS(p;,p;) ;
if alpha is greater than 0 then
| add the weighted edge (p;,p;,0) t0 Esou;
end
end

end

3.2 Pruning Semantic Similarity Networks

This section explains the pruning of semantic similarity network through an
example. To better clarify the process, we use an auxiliary graph G,, that is
the final process of pruning. The graph is built in an incremental fashion by
considering all the nodes of Gg,. The process is straightforward. The pruning
algorithm examines each node € G, . For each node it stores all the weights of
the adjacent edges. Then it determine a local threshold (for instance the average
of the weights or the median value as exposed after). At the end of this step, the
node ¢ and all the adjacent ones are inserted in to Gy, (only if they are not yet
present).

Then each edge adjacent to ¢ with weight greater with the determined local
threshold is inserted into G, . If the considered edge is not present in G, the
edge will have weight 0.5, otherwise the weight of the edge is set to 1. We used in
this work two simple thresholds, the average and the median of all the weights.
Finally all the nodes with 0 degree are deleted from Gp,.

The rationale of this process is that edges that are relevant considering the
neighborhood of both nodes will compare in the pruned graph with unitary



weight while edges that are relevant considering one node will compare with 0.5
weight. In this way we think that we may reduce the noise.

For instance, let us consider the network depicted in Figure 1 and let us
suppose that threshold is represented by the average. Without loss of generality
we suppose k=0 in this example. Let AV G(node;) be the average of the weights
of nodes adjacent to node; that is used as threshold.
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Fig. 1. Weighted Semantic Similarity Network.

— The algorithm initially explores nodey, since it has degree 1, it is discarded
from the analysis.

— Then it explores node; that is discarded similarly to nodey.

— When node; is considered, the algorithm adds into G nodeg, nodey, nodes,
and nodey and the edge (nodea, nodes) with weight 0.5 - (the average of the
weights of the neighbours of nodes is equal to 0,13 and other two edges have
a lower weight). Figure 2 depicts the produced graph at this step.

noded

Fig. 2. The output of the algorithm at Step 2

— nodes is reached by the visiting. Then nodes, and nodes are inserted into
Gpr. The AV G(nodes) is equal to 0,46, so only edges (nodes,nodes) and
(nodes, nodes) are inserted into G, with weight 0.5. Figure 3 depicts Gy,
after this step.

— nodey is reached. Since all the adjacent nodes have been inserted into G,
no nodes are added into this step. The AV G(nodey) is equal to 0,6, so all the
edges must be inserted. In particular edge (nodes,nodes) is yet present, so
its weight is updated to 1.0. Diversely, (nodey, nodes) is inserted with weight
equal to 0.5. Figure 4 depicts Gy, after this step.

— nodes is reached. node; and nodeg are inserted into Gp,. The AV G(nodes)
is 0,575. Consequently the weight of (nodes,nodes) (nodes,nodes4d and in
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Fig. 3. Output after the visit of node3.
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Fig. 4. Output after the visit of node4.

Gpr is updated to 1, (nodeg, noder) is inserted into Gy, .Figure 6 depicts G,
after this step.
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Fig. 5. Output after the visit of node5.

— node7; and nodeg are visited but discarded since they have degree equal to
1.

— Finally all the nodes with zero degree are eliminated from G,,, producing
the resulting graph depicted in Figure 6.

The generation of pruned graph is repeated until the graph has nearly dis-
connected components. This may be evident by analyzing the spectrum of the
associated laplacian for value of threshold.

Pruning Semantic Similarity Network
Input SSn Raw Semantic Simlarity Network,
K Threshold of Simplification
Output: SSp Simplified Semantic Similarity Network
While SSp has not nearly-disconnected component
$5Sp$ = Simplify(SSn,k)
Increment k
Return: SSp



Fig. 6. Final pruned graph

3.3 Analysis of Semantic Similarity Networks

As introduced, in a Semantic Similarity Networks, nodes represent proteins or
genes, and edges represent the value of similarity among them. Starting from
a dataset of genes or proteins, a SSN may be built in an iterative way, and
once built, algorithms from graph theory may be used to extract topological
properties that encode biological knowledge.

As starting point, the global topology of an semantic similarity network,
i.e. the study of the clustering coefficient or of the diameter, can reveal main
properties of the network and the correspondence with respect to a theoretical
model.

In addition to analysis of global properties, the study of recurring local topo-
logical features and the extraction of relevant modules, i.e. cliques, has found an
increasing interest. For the purposes of this work, we focus on the extraction of
dense subgraphs under the hypothesis that they could encode protein complexes.

SS measures are able to quantify the functional similarity of pairs of pro-
teins/genes, comparing the GO terms that annotate them. Thus, there are no
constraints on the minimum set size [2].

Since proteins within the same pathway are involved in the same biological
process, they are likely to have high semantic similarity. In a similar way, protein
belonging to the same complex are likely to have similar biological roles, and
therefore they should have high semantic similarity.

The rationale of this study is to demonstrate the ability of semantic sim-
ilarity networks to represent in a similar way to protein interaction networks.
Main difference is represented by the fact that semantic similarity networks may
encode more knowledge that is hidden in protein interaction networks.

There exist currently main approaches of analysis of protein interaction net-
works that span a broad range, from the analysis of a single network by clustering
to the comparison of two or more networks trough graph alignment approaches.
In this work we consider the use of Markov Clustering Algorithm (MCL) as min-
ing strategy. MCL has been proved to be a good predictor of functional modules
when applied to protein interaction networks.

4 Case Study

In order to show the effectiveness of this strategy we propose the following as-
sessment:



— we downloaded three dataset of proteins (the CYC2008 dataset !, the MIPS
catalog [24], and the Annotated Yeast High-Throughput Complexes 2 );

— we calculated different semantic similarities among them using FastSemSim
tool 3 (we considered 10 semantic similarity measures from those available
in FastSemSim ( Czekanowsky-Dice , Dice, G-Sesame, Jaccard, Kin, NTO,
SimGic, SimICND, SimIC, SimUI, TO [25] ) and two ontologies Biological
Process (BP) and Molecular Function (MF). Consequently we generated 20
SSN for each input dataset.

— we applied the pruning of the semantic network with varying threshold caus-
ing the presence of nearly disconnected components and the presence of dis-
connected components;

— we extracted modules on the raw and simplified networks at various thresh-
old showing the improvements of our strategy showing the improvement in
terms of functional enrichment of modules (i.e. the quantification of biolog-
ical meaning of modules).

As final step we compare our simplification with other global strategies
demonstrating the effectiveness of the local simplification.

4.1 Results

For each generated network we used the markov clustering algorithm (MCL) to
extract modules. The effectiveness of the use of MCL for detecting modules in
networks has been demonstrated in many works (see for instance [25]). We here
assess how MCL is able to discover functionally coherent modules in different
semantic similarity network and how this process is positively influenced by the
simplification. In particular we show how the process of simplification improves
the overall results and how best results are obtained when networks presents
nearly disconnected components.

We evaluated the obtained results in terms of functional coherence of ex-
tracted modules. We define functional coherence FC of a module M as the
average of semantic similarity values of all the pair of nodes (i,j) composing a
module.

Z SSM((i,7)
i, N
, where N is the number of the proteins of the module.

Starting from this definition, we may obtain a single value for all the modules
extracted in an execution of MCL by averaging these values. We consider this
average value as a representative for the thresholded network. Figures 7, 8, and
9 summarize these results.

! wodaklab.org/cyc2008/
2 wodaklab.org/cyc2008/
3 fastsemsim.sourceforge.net
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Fig. 7. Comparison of Average FC at different Threshold Levels on CYC2008 Dataset

—#—Czekanowsky-Dice
—8—Dice
—h—G-Sesame

== Jaccard

—H=Kin

~&-NTO
= simGic
~——SimICND

simiC
~4=Simul
~5-T0

Fig. 8. Comparison of Average FC at different Threshold Levels on MIPS
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Fig. 9. Comparison of Average FC at different Threshold Levels on Annotated High
Throughput Complexes Dataset

5 Conclusion

Results showed that raw semantic similarity networks contains lot of noise, thus
are unsuitable for the analysis. Consequently we proposed a local simplification
of networks. Result confirm that mining of simplified networks is a suitable way
for extract biologically meaningful knowledge.
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